## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

# 2,2'-Diselenodibenzoic acid $\mathrm{N}, \mathrm{N}$-dimethylformamide disolvate 

## Ying Xu, Qing-Chen Dong, Hong-Bo Tong and Xue-Hong Wei*

Institute of Applied Chemistry, Shanxi University, Shanxi, People's Republic of China Correspondence e-mail: xhwei@sxu.edu.cn

Received 29 October 2007; accepted 2 November 2007

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; $R$ factor $=0.034 ; w R$ factor $=0.091$; data-to-parameter ratio $=14.9$.

The molecular structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Se}_{2} \cdot-$ $2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, reveals $C_{i}$ symmetry, with the inversion centre located at the mid-point of the $\mathrm{Se}-\mathrm{Se}$ bond. Diselenide derivatives are important in the synthesis of ebselen and other organoselenium compounds. These derivatives are of interest owing to their biological activity as oxidoreductans. The structure displays an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between the carboxyl group and the carbonyl unit of the dimethylformamide solvent molecule.

## Related literature

For related literature, see: Israelachvili (1991); Iwaoka \& Tomoda (1994); Mugesh et al. (2001); Nagao et al. (1998); Zade et al. (2005); Fujita et al. (1997); Björnstedt et al. (1995); Sagher et al. (2006).


## Experimental

## Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Se}_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$

$$
\begin{aligned}
& a=8.202(2) \AA \\
& b=13.223(4) \AA \\
& c=21.849(6) \AA
\end{aligned}
$$

$\beta=96.425(4)^{\circ}$
$V=2354.6$ (11) $\AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Siemens SMART CCD areadetector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.449, T_{\max }=0.569$
(expected range $=0.418-0.530)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad 139$ parameters
$w R\left(F^{2}\right)=0.091$
$S=1.08$
2072 reflections
$\mu=3.18 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

4745 measured reflections
2072 independent reflections
1607 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$

Table 1
Hydrogen-bond geometry ( $\AA,^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| O1-H1 $\cdots \mathrm{O}^{\mathrm{i}}$ | 0.82 | 1.73 | $2.541(4)$ | 169 |
| Symmetry code: (i) $x+1, y+1, z$. |  |  |  |  |

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the Project of Science and Technology of Shanxi College (20051201) for financial support, and the Youth Foundation of Shanxi University (grant No. 2006026).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2145).

## References

Björnstedt, M., Hamberg, M., Kumar, S., Xue, J. \& Holmgren, A. (1995). J. Biol. Chem. 270, 11761-11764.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fujita, K., Murata, K., Iwaoka, M. \& Tomoda, S. (1997). Tetrahedron, 53, 2029-2048.
Israelachvili, J. (1991). Intermolecular and Surface Forces. London: Academic Press.
Iwaoka, M. \& Tomoda, S. (1994). J. Am. Chem. Soc. 116, 2557-2561.
Mugesh, G., Mont, W.-W. \& Sies, H. (2001). Chem. Rev. 101, 2125-2179.
Nagao, Y., Hirata, T., Goto, S., Sano, S., Kakehi, A., Iizuka, K. \& Shiro, M. (1998). J. Am. Chem. Soc. 120, 3104-3110.

Sagher, D., Brunell, D., Brot, N., Vallee, B. L. \& Weissbach, H. (2006). J. Biol. Chem. 281, 31184-31187.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zade, S. S., Panda, S., Singh, H. B., Sunoj, R. B. \& Butcher, R. J. (2005). J. Org. Chem. 70, 3693-3704.

## supplementary materials

Acta Cryst. (2007). E63, o4629 [ doi:10.1107/S1600536807055493]

## 2,2'-Diselenodibenzoic acid $N, N$-dimethylformamide disolvate

Y. Xu, Q.-C. Dong, H.-B. Tong and X.-H. Wei

## Comment

During the past decade the non-bonded interactions (Mugesh et al., 2001) and their role in molecular recognition, conformational transformation, and molecular packing in crystals were studied (Israelachvili,1991). In particular, for organoselenium derivatives have been frequently discovered that the divalent selenium interacts with a nearby hetero-atom ( $\mathrm{O}, \mathrm{N}, \mathrm{Se}$ ) generating a pseudo-high-valent selenium species. The weak actions have been successfully applied not only to asymmetric synthesis (Fujita et al., 1997) but also to enzyme-mimetic catalytic reactions. Moreover, previous experiments indicated that a pseudo-multivalent state of Se might be related to biological activities of Se compounds (Iwaoka \& Tomoda, 1994). The seleno compounds can serve as oxidoreductants with the methionine sufoxide reductase enzymes (Sagher et al., 2006) and as reducing agents for lipid hydroperoxides (Björnstedt et al., 1995). This phenomenon attracts considerable attention (Nagao et al., 1998).

Many kinds of diselenide compounds and their derivatives have been synthesized and fully characterized successfully, but the structure of the title compound (I) has not been investigated thoroughly. In this paper, the titled compound was synthesized and characterized by NMR spectra. In the title molecule, the $\mathrm{Se}-\mathrm{Se}$ bond distance is $2.287 \AA$, and the distance $(2.703 \AA)$ of Se and nearby O atom of carbonyl are significantly shorter than the sum of their vander waals radii ( $3.40 \AA$ ) (Zade et al., 2005). The crystal structure involves hydrogen bond $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ beween the carboxyl group and carbonyl moiety of a solvate (Table 1). distance 2.541 (4) $\AA$ and angle is $169^{\circ}$. The asymmetric unit is planar with r.m.s. deviation of 0.030 $\AA$. The dihedral angle between these symmetry related planar moieties is $83.60^{\circ}$.

## Experimental

Absolute ethanol ( 30 ml ), dried by distillation over sodium, was added with magnetic stirring to $1.0 \mathrm{~g}(12.6 \mathrm{mmol})$ of selenium and $0.35 \mathrm{~g}(9.3 \mathrm{mmol})$ of sodium borohydride cooled on an ice bath. After the initial reaction had subsided, the mixture was stirred and heated at reflux for 1.5 h with $\mathrm{N}_{2}$ introduced into the liquid in order to dissolve the selenium and expel $\mathrm{H}_{2} \mathrm{Se}$. Cooled on an ice bath again, diazonium salt $(8.4 \mathrm{mmol})$ prepared from anthranilic acid was added and the solution was refluxed for $3 \mathrm{~h} . \mathrm{O}_{2}$ was passed through the mixture slowly for 1.5 h to remove any $\mathrm{H}_{2} \mathrm{Se}$. After acidification with hydrochloric acid, the filter cake was dissolved in sodium acid carbonate solution and reflux for 1 h , then acidified with hydrochloric acid again. The pale-yellow solid product was collected by filtration and recrystallized from DMF-methanol (2: 1). Yield: $85 \%,{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}$ ) $\delta: 8.20(\mathrm{~d}, 2 \mathrm{H}), 7.64(\mathrm{~d}, 2 \mathrm{H}), 7.50(\mathrm{t}, 2 \mathrm{H}), 7.38(\mathrm{t}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right)$ $\delta: 123.2,124.8,127.0,128.5,131.3,131.9,166.9(\mathrm{C}=\mathrm{O}) ;{ }^{77} \mathrm{Se}$ NMR (DMSO- $d_{6}$ ) $\delta: 439.2$. Anal. Calcd. for: $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Se}_{2}$, C, 42.02; H, 2.52\% Found: C, 41.58; H, 2.49\%.

## Refinement

(type here to add refinement details)

## supplementary materials

## Figures



Fig. 1. The molecular structure of the title compound. The solvent molecules have been omitted.

## 2,2'-Diselenodibenzoic acid $\mathbf{N}, \mathbf{N}$-dimethylformamide disolvate

## Crystal data

$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Se}_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=546.34$
Monoclinic, C2/c
Hall symbol: -C2yc
$a=8.202$ (2) $\AA$
$b=13.223$ (4) $\AA$
$c=21.849(6) \AA$
$\beta=96.425$ (4) ${ }^{\circ}$
$V=2354.6$ (11) $\AA^{3}$
$Z=4$
$F_{000}=1096$
$D_{\mathrm{x}}=1.541 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1983 reflections
$\theta=2.9-27.3^{\circ}$
$\mu=3.18 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
$\omega$ scans
Absorption correction: Multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.449, T_{\text {max }}=0.569$
4745 measured reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.091$
$S=1.08$
2072 reflections

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0388 P)^{2}+1.4577 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3}$

139 parameters
$\Delta \rho_{\text {min }}=-0.32$ e $\AA^{-3}$
Primary atom site location: structure-invariant direct methods

Extinction correction: none

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of $\mathrm{F}^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit S are based on $\mathrm{F}^{2}$, conventional $R$-factors $R$ are based on F , with F set to zero for negative $\mathrm{F}^{2}$. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating $R$-factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $\mathrm{F}^{2}$ are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| Se | $1.03742(4)$ | $0.89916(3)$ | $0.303005(16)$ | $0.06579(17)$ |
| N | $0.3833(4)$ | $0.0067(3)$ | $0.60861(14)$ | $0.0774(9)$ |
| O 1 | $1.0166(5)$ | $0.7946(3)$ | $0.49575(13)$ | $0.1180(12)$ |
| H 1 | 1.0792 | 0.8286 | 0.5193 | $0.177^{*}$ |
| O 2 | $1.1015(3)$ | $0.89762(19)$ | $0.42617(12)$ | $0.0793(7)$ |
| O 3 | $0.2003(5)$ | $-0.1147(3)$ | $0.57969(15)$ | $0.1173(12)$ |
| C 1 | $0.9004(4)$ | $0.7933(2)$ | $0.33137(16)$ | $0.0568(8)$ |
| C 2 | $0.9069(4)$ | $0.7714(2)$ | $0.39329(16)$ | $0.0591(8)$ |
| C 3 | $0.8061(4)$ | $0.6957(3)$ | $0.41283(18)$ | $0.0735(10)$ |
| H 3 | 0.8099 | 0.6813 | 0.4546 | $0.088^{*}$ |
| C 4 | $0.7014(5)$ | $0.6421(3)$ | $0.3715(2)$ | $0.0815(11)$ |
| H4 | 0.6346 | 0.5918 | 0.3849 | $0.098^{*}$ |
| C5 | $0.6972(5)$ | $0.6636(3)$ | $0.3109(2)$ | $0.0829(12)$ |
| H5 | 0.6268 | 0.6272 | 0.2827 | $0.099^{*}$ |
| C6 | $0.7950(4)$ | $0.7384(3)$ | $0.28949(18)$ | $0.0719(10)$ |
| H6 | 0.7901 | 0.7518 | 0.2475 | $0.086^{*}$ |
| C7 | $1.0173(5)$ | $0.8280(3)$ | $0.44022(17)$ | $0.0698(10)$ |
| C8 | $0.2838(5)$ | $-0.0414(4)$ | $0.5669(2)$ | $0.0895(12)$ |
| H8 | 0.2762 | -0.0195 | 0.5262 | $0.107^{*}$ |
| C9 | $0.3944(6)$ | $-0.0226(4)$ | $0.67189(18)$ | $0.1087(17)$ |
| H9A | 0.3579 | 0.0321 | 0.6958 | $0.163^{*}$ |
| H9B | 0.5062 | -0.0388 | 0.6863 | $0.163^{*}$ |
| H9C | 0.3265 | -0.0808 | 0.6760 | $0.163^{*}$ |
| C10 | $0.4853(6)$ | $0.0882(4)$ | $0.5917(2)$ | $0.1167(17)$ |
| H10A | 0.5978 | 0.0666 | 0.5958 | $0.175^{*}$ |
| H10B | 0.4740 | 0.1451 | 0.6182 | $0.175^{*}$ |
| H10C | 0.4523 | 0.1074 | 0.5498 | $0.175^{*}$ |
|  |  |  |  |  |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Se | $0.0719(3)$ | $0.0463(2)$ | $0.0776(3)$ | $-0.01384(16)$ | $0.00154(18)$ | $-0.00285(16)$ |
| N | $0.0660(19)$ | $0.084(2)$ | $0.080(2)$ | $0.0075(17)$ | $0.0005(17)$ | $-0.0035(18)$ |
| O 1 | $0.139(3)$ | $0.143(3)$ | $0.0727(18)$ | $-0.073(2)$ | $0.0137(18)$ | $-0.0099(19)$ |
| O 2 | $0.0797(17)$ | $0.0727(18)$ | $0.0833(17)$ | $-0.0342(14)$ | $-0.0008(14)$ | $-0.0056(13)$ |
| O 3 | $0.124(3)$ | $0.134(3)$ | $0.093(2)$ | $-0.037(2)$ | $0.012(2)$ | $-0.016(2)$ |
| C 1 | $0.0492(17)$ | $0.0408(17)$ | $0.079(2)$ | $-0.0040(14)$ | $0.0027(15)$ | $-0.0056(15)$ |
| C 2 | $0.0502(18)$ | $0.052(2)$ | $0.076(2)$ | $-0.0037(15)$ | $0.0092(16)$ | $-0.0096(16)$ |
| C 3 | $0.071(2)$ | $0.066(2)$ | $0.086(2)$ | $-0.0155(19)$ | $0.0219(19)$ | $-0.005(2)$ |
| C 4 | $0.071(2)$ | $0.065(2)$ | $0.111(3)$ | $-0.024(2)$ | $0.021(2)$ | $-0.012(2)$ |
| C 5 | $0.071(2)$ | $0.066(3)$ | $0.108(3)$ | $-0.022(2)$ | $-0.007(2)$ | $-0.014(2)$ |
| C 6 | $0.071(2)$ | $0.057(2)$ | $0.085(2)$ | $-0.0136(18)$ | $-0.0061(19)$ | $-0.0070(18)$ |
| C 7 | $0.067(2)$ | $0.070(3)$ | $0.073(2)$ | $-0.0101(19)$ | $0.0106(18)$ | $-0.0080(19)$ |
| C8 | $0.083(3)$ | $0.108(4)$ | $0.078(3)$ | $-0.010(3)$ | $0.008(2)$ | $-0.002(3)$ |
| C9 | $0.117(4)$ | $0.139(5)$ | $0.067(3)$ | $0.033(3)$ | $-0.008(2)$ | $-0.010(3)$ |
| C10 | $0.087(3)$ | $0.106(4)$ | $0.153(5)$ | $-0.011(3)$ | $-0.001(3)$ | $0.008(3)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Se}-\mathrm{C} 1$ | $1.940(3)$ |
| :--- | :--- |
| $\mathrm{Se}-\mathrm{Se}$ | $2.3288(9)$ |
| $\mathrm{N}-\mathrm{C} 8$ | $1.317(5)$ |
| $\mathrm{N}-\mathrm{C} 9$ | $1.429(5)$ |
| $\mathrm{N}-\mathrm{C} 10$ | $1.438(5)$ |
| $\mathrm{O} 1-\mathrm{C} 7$ | $1.292(4)$ |
| $\mathrm{O} 1-\mathrm{H} 1$ | 0.8200 |
| $\mathrm{O} 2-\mathrm{C} 7$ | $1.211(4)$ |
| $\mathrm{O} 3-\mathrm{C} 8$ | $1.236(5)$ |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.379(5)$ |
| $\mathrm{C} 1-\mathrm{C} 6$ | $1.391(4)$ |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.396(5)$ |
| $\mathrm{C} 2-\mathrm{C} 7$ | $1.491(5)$ |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.372(5)$ |
| $\mathrm{C} 1-\mathrm{Se}-\mathrm{Se}$ | $102.72(10)$ |
| $\mathrm{C} 8-\mathrm{N}-\mathrm{C} 9$ | $120.4(4)$ |
| $\mathrm{C} 8-\mathrm{N}-\mathrm{C} 10$ | $121.2(4)$ |
| $\mathrm{C} 9-\mathrm{N}-\mathrm{C} 10$ | $118.4(4)$ |
| $\mathrm{C} 7-\mathrm{O} 1-\mathrm{H} 1$ | 109.5 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$ | $119.3(3)$ |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{Se}$ | $120.3(2)$ |
| $\mathrm{C} 6-\mathrm{C} 1-\mathrm{Se}$ | $120.4(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $119.5(3)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$ | $121.6(3)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$ | $119.0(3)$ |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $121.2(4)$ |
|  |  |

## sup-4

## supplementary materials

| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$ | 119.4 |
| :--- | :--- |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$ | 119.4 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $118.8(4)$ |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$ | 120.6 |
| $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$ | 120.6 |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $121.9(4)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$ | 119.0 |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$ | 119.0 |
| C5-C6-C1 | $119.3(4)$ |
| Symmetry codes: $(\mathrm{i})-x+2, y,-z+1 / 2$. |  |


| H9A-C9-H9C | 109.5 |
| :--- | :--- |
| H9B-C9-H9C | 109.5 |
| N-C10-H10A | 109.5 |
| N-C10-H10B | 109.5 |
| H10A-C10-H10B | 109.5 |
| N-C10-H10C | 109.5 |
| H10A-C10-H10C | 109.5 |
| H10B-C10-H10C | 109.5 |

Hydrogen-bond geometry ( $A,^{\circ}$ )

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$ | 0.82 | 1.73 | $2.541(4)$ | 169 |

Symmetry codes: (ii) $x+1, y+1, z$.

Fig. 1


